Schlumberger

Technical Paper: Ultra-Deepwater Blowout Well Control Analysis under Worst Case Blowout Scenario

Society: SPE
Paper Number: 170256
Presentation Date: 2014
 Download: Ultra-Deepwater Blowout Well Control Analysis under Worst Case Blowout Scenario (3.53 MB PDF) Login | Register

 

Abstract

For offshore wells, the regulatory agency requires the submission of a worst discharge analysis and relief well planning report. The ability to control the blow out under worst case blowout scenario shall be documented and is a requirement for the operators to successfully apply for a permit to drill in the US offshore fields. 

As the water depths of offshore drilling operations are getting deeper and deeper, due to the increased frictional pressure losses in kill lines and formation fracture strength, bringing the blow out well under control with worst case discharge becomes more challenging. Operational parameters need to be carefully controlled to avoid exceeding the operational limitations such as breaking the formation or exceeding available pump capacity. 

In this study, dynamic simulations of multiphase flow are carried out to evaluate the operational parameters during the kill process. The simulations account for transient changes including frictional pressure losses, U-tube effect and fluid density variations. By optimizing the operational sequence with regards to, kill mud density, pump flow rate, pump down staging, relief well drillstring and trajectory, blowout can be controlled without exceeding the operational window. 

The paper shows the required volumes of the kill mud, required pump capacity, optimal flow rate arrangement, and minimum time required to get full kill mud return to the sea floor during the well kill operation. Through the aid of advanced transient software models, assessment of the required capacity to kill a blowout enables development of realistic contingency plans to ensure that well control can be re-established in case of an ultra-deep water worst blowout scenario.

Related products on the Schlumberger software site

 
 
Request More Information

Recovery of Reserves Increased Using Simulations

Subsea pipeline
The OLGA simulator enables the onset of instability to be predicted, which can lead to significantly increased recovery of reserves. Visit OLGA Dynamic Multiphase Flow Simulator on the Schlumberger software site