Oilfield firsts:
1995 Downhole fiber-optic sensing
2004 Subsea fiber-optic deployment
2006 Hybrid fiber-optic electric cable
2008 Sandface fiber-optic deployment
2010 Fiber-optic pressure gauge

Background
Since 1995, when Schlumberger began using fiber optics for distributed temperature sensing (DTS) in wells, R&D has been focused on enhancing fiber reliability. Optical fiber tends to degrade when exposed to high levels of hydrogen or high temperatures. The fiber begins to darken, causing incorrect temperature readings.

Schlumberger then pioneered accelerated aging tests for optical fibers at high temperatures. WellWatcher BriteBlue HT* high-temperature multimode DTS fiber, which resulted from this research, increased light transmission by almost 50-fold. The results were exceptional resistance to hydrogen, longer life, faster response time, and better spatial resolution.

Technology
- WellWatcher BriteBlue* multimode DTS fiber
- WellWatcher BriteBlue HT high-temperature multimode DTS fiber
- WellWatcher Neon* DTS and PT gauge system

WellWatcher BriteBlue DTS Fiber Leads Industry in Reliability, with 20-Year Track Record of Success
More than 1,400 permanent installations, more than 17 million ft [5 million m] of fiber, and a life span of more than 10 years

Since 1995, Schlumberger has deployed WellWatcher BriteBlue multimode DTS fiber in more than 1,400 installations worldwide.

The WellWatcher BriteBlue multimode DTS fiber is used to monitor downhole distributed temperature profiles from the surface in real time. The fiber has field-proven resistance to hydrogen and chemical darkening up to 572 degF [300 degC]. It provides enhanced spatial resolution and faster temperature response for high-temperature wellbore monitoring in steam-flood, steam-assisted gravity drainage (SAGD), and other extreme applications.

slb.com/wellwatcher

*Mark of Schlumberger. Copyright © 2014 Schlumberger. All rights reserved. 14-CO-0294