"Through the Faculty for the Future fellowships, we aim at bringing down the economic barrier that would otherwise prevent outstanding women scientists from pursuing their education and life dream."

Ms. Roseline Chapel
President,
Schlumberger Foundation
Table of Contents

Introduction—Word from the President 06–07
Financial Overview 08–09
Faculty for the Future Program in 2016 10–15
Faculty for the Future Regional Forums 16–17
Role Models in STEM 18–29
Introduction

Word from the President

Faculty for the Future, the flagship program of the Schlumberger Foundation, when launched 12 years ago, was designed to become a force for change by attempting to narrow the gender gap in science, technology, engineering and mathematics (STEM). To date, the number of women scientists from 78 developing countries who have been granted financial support from this program stands at 598. Gradually, these women are contributing to a growing global scientific community that is beginning to thrive.

Through research collaborations, international conferences, high quality publications and innovative scientific research, these women are turning their childhood dreams of a higher education in the field of sciences into a reality. These are the women who carry within them the force for change. These are the women who, armed with new qualifications, skill sets and heightened confidence, will be instrumental in bringing about the change in their local communities for which this program was designed.

As many of these women are now beginning to reinte grated back home upon completion of their PhD or Post Doc research at a top international institution, they will naturally become strong role models and inspiring mentors for other girls and young women around them. Many more women will be encouraged to pursue science as a career and as a way of life because of the journeys that these women have undertaken.

Later in this report, you will learn how the combination of a passion for science, sheer inner strength and more than a dollop of talent, has helped some of these women through tough, early years when they had to sometimes fight hard for their right to study science and how they have excelled through perseverance and determination. Through role models such as these, we are convinced that the small changes they can bring about in their local communities, can have larger ripple effects that will benefit many in the future.
In 2016, the Schlumberger Foundation continued with its flagship Faculty for the Future program providing academic opportunities in STEM disciplines to female scientists from the developing world by financially supporting their studies at renowned universities and research institutes to obtain a PhD degree or conduct post-doctoral research.

The key goal of the program focuses on gender gap reduction in STEM education by breaking down the economic barrier that prevents women from achieving their educational ambitions.

In 2016, the Faculty for the Future program continued to attract high quality applications with 841 applications submitted representing a decrease of 23% year-on-year (YoY). In addition, 186 renewal applications were submitted marking a 36% increase from the previous year. Following a rigorous selection process involving 4 different rounds and the involvement of over 35 Schlumberger scientists, 49 new fellows were awarded a grant in 2016 bringing the total population who has received financial support from this program to 598 female scientists coming from 78 developing countries and studying in 28 host countries around the world.

Grant spend decreased by 11% YoY reaching $7.7M. A total of $2.6M was disbursed to grantees studying in universities in the US (vs $3.5M last year) while $2.8M was disbursed to grantees in the UK (vs $3M last year). The remainder was disbursed to students at universities in Australia, Canada, Europe, Japan and South Africa.

Financial Overview
THE FACULTY FOR THE FUTURE PROGRAM IN 2016: RESEARCH TYPE AND COUNTRY OF STUDY
598 FELLOWS FROM 78 COUNTRIES STUDYING IN 28 HOST COUNTRIES

Faculty for the Future Program

Recipients of the 598 Faculty for the Future Fellowships awarded to date come from developing and emerging economies representing most of the world’s continents. They have benefitted from attending leading research institutes in 28 host countries around the world.

In 2016 the choice of disciplines continued to embrace the core scientific domains (chemistry, physics and mathematics) while other fields such as civil & environmental engineering, agriculture, bioengineering, environmental sciences, computer engineering, hydrology, nutrition and medicine were also prominent with many research projects directly focused on home country related issues.
THE FACULTY FOR THE FUTURE PROGRAM IN 2016: CITIZENSHIP VS STUDY
598 FELLOWS FROM 78 COUNTRIES STUDYING IN 28 HOST COUNTRIES

AFRICA
- South Africa: 46 / 4
- Kenya: 1 / 22
- Nigeria: 87
- Ghana: 21
- Zimbabwe: 15
- Tanzania: 14
- Uganda: 14
- Egypt: 13
- Ethiopia: 11
- Cameroon: 7
- Sudan: 6
- Madagascar: 5
- Zambia: 5
- Algeria: 4
- Lesotho: 3
- Malawi: 3

Europe
- United States: 210
- Canada: 24
- Mexico: 1 / 13
- Colombia: 12
- Brazil: 8
- Peru: 4
- Argentina: 3
- Ecuador: 3
- Costa Rica: 2
- Nicaragua: 2
- Venezuela: 2
- Bolivia: 1
- Dominican Rep.: 1
- El Salvador: 1
- Guatemala: 1
- Guyana: 1
- Paraguay: 1
- Trinidad & Tobago: 1

AMERICAS
- United States: 210
- Canada: 24
- Mexico: 1 / 13
- Colombia: 12
- Brazil: 8
- Peru: 4
- Argentina: 3
- Ecuador: 3
- Costa Rica: 2
- Nicaragua: 2
- Venezuela: 2
- Bolivia: 1
- Dominican Rep.: 1
- El Salvador: 1
- Guatemala: 1
- Guyana: 1
- Paraguay: 1
- Trinidad & Tobago: 1

OCEANIA
- Australia: 28
- New Zealand: 2
- Papua New Guinea: 2
- Fiji: 1

ASIA
- Japan: 14
- South Korea: 3 / 1
- Malaysia: 2 / 4
- Indonesia: 1 / 37
- China: 1 / 31
- Singapore: 1
- India: 66
- Pakistan: 43
- Bangladesh: 12
- Vietnam: 9
- Philippines: 8
- Nepal: 7
- Sri Lanka: 5
- Thailand: 4
- Myanmar: 3
- Mongolia: 2
- Afghanistan: 1
- Armenia: 1

MIDDLE EAST
- Turkey: 11
- Iran: 9
- Jordan: 4
- Iraq: 3
- Palestinian Territories: 3
- Syria: 2
- Kuwait: 1
- Oman: 1
- Yemen: 1

EUROPE
- United Kingdom: 168
- Germany: 28
- Netherlands: 24
- Belgium: 10
- France: 10
- Sweden: 7
- Italy: 5
- Finland: 2
- Norway: 2
- Spain: 2
- Austria: 1
- Denmark: 1
- Ireland: 1
- Russia: 1 / 4
- Switzerland: 1
- Ukraine: 2

AFRICA
- South Africa: 46 / 4
- Kenya: 1 / 22
- Nigeria: 87
- Ghana: 21
- Zimbabwe: 15
- Tanzania: 14
- Uganda: 14
- Egypt: 13
- Ethiopia: 11
- Cameroon: 7
- Sudan: 6
- Madagascar: 5
- Zambia: 5
- Algeria: 4
- Lesotho: 3
- Malawi: 3
- Namibia: 4
- Rwanda: 4
- Benin: 2
- Botswana: 2
- Mozambique: 2
- Sierra Leone: 2
- Liberia: 1
- Libya: 1
- Mauritius: 1
- Morocco: 1
- Somalia: 1
- Sudan (Rep. of): 1
- Swaziland: 1
- Togo: 1
- Tunisia: 1

“Fellows” refers to current and former grantees of the program.
The Faculty for the Future Program in 2016: Host Universities

598 Fellows from 78 Countries Studying in 28 Host Countries

United States	14 Massachusetts Institute of Technology	12 Texas A&M University	10 University of Texas at Austin	9 Georgia Institute of Technology	8 Harvard University	7 University of Florida	6 Pennsylvania State University	6 University of Illinois, Urbana-Champaign	6 University of California, Irvine	5 California Institute of Technology	5 Purdue University	5 Stanford University, Stanford	5 University of Georgia	4 Carnegie Mellon University	4 Columbia University	4 Cornell University	4 Rice University	4 Louisiana State University	3 Arizona State University	3 Duke University	3 Johns Hopkins University	3 North Carolina State University	3 University of Arizona	3 University of California, Berkeley	3 University of South Florida	2 Auburn University	2 Boston University	2 Iowa State University	2 Michigan State University	2 Northeastern University	2 Northwestern University	2 Ohio State University	2 Oklahoma State University	2 Princeton University	2 Rutgers University	2 South Dakota State University	2 Syracuse University	2 Texas Tech University	2 University of Michigan	2 University of North Carolina	2 University of Notre Dame	2 University of Pittsburgh	2 University of Wyoming	2 Yale University	1 Brandeis University	1 Colorado School of Mines	1 Drexel University	1 George Mason University	1 Indiana University	1 Missouri Univ. of Science and Tech.	1 Montana State University	1 National Institutes of Health	1 New Jersey Institute of Technology	1 New York University	1 Ohio University	1 Polytechnic Institute of New York Univ.	1 Tennessee Technological University	1 The Scripps Research Institute, La Jolla	1 University of Buffalo, the State Univ. of NY	1 University of California, Davis	1 University of California, San Francisco	1 University of California, Santa Barbara	1 University of Houston	1 University of Iowa	1 University of Kentucky	1 University of Michigan	1 University of Minnesota	1 University of Nebraska-Lincoln	1 University of Utah	1 University of Washington	1 Vanderbilt University
South Africa	18 University of Cape Town	8 Stellenbosch University	6 University of the Witwatersrand	4 University of Pretoria	3 Rhodes University	2 University of the Western Cape	2 University of Warwick	1 Dartmouth College	1 Duke University	1 Harvard University	1 Imperial College London	1 King’s College London	1 University of Cape Town	1 University of the Witwatersrand	1 University of the Western Cape																																																								
Australia	7 University of Queensland	4 James Cook University	4 University of Sydney	2 University of Canberra	2 University of Melbourne	2 University of Technology Sydney	1 Curtin University	1 Edith Cowan University	1 Flinders University	1 Monash University	1 Queensland University of Technology	1 The Australian National University	1 University of New South Wales	1 University of South Australia																																																									
Germany	2 Hamburg University of Technology	2 Heinrich Heine Univ. of Dusseldorf	2 Saarland University	2 Technische Universität Berlin	2 University of Bonn	2 University of Leipzig	2 University of Ulm	1 Carlow Orange University																																																															
Japan	4 Kyoto University	2 Kyushu University	2 Kyoto Institute of Technology	1 Chiba University	1 Hokkaido University																																																																		
Netherlands	7 UNESCO-IHE Institute for Water Education	4 Delft University of Technology	3 University of Groningen	2 University of Amsterdam	2 University of Twente	2 Wageningen University	1 Eindhoven University of Technology	1 University of Twente																																																															
South Korea	1 Ewha Womans University	1 Gwangju Institute of Science & Technology	1 Seoul National University																																																																				
Finland	1 University of Helsinki	1 University of Oulu																																																																					
New Zealand	2 Universiti Teknologi Mara																																																																						

Number of Fellows studying (or have studied) in host country

<table>
<thead>
<tr>
<th>Country</th>
<th>Number of Fellows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>7</td>
</tr>
<tr>
<td>China</td>
<td>1</td>
</tr>
<tr>
<td>Denmark</td>
<td>1</td>
</tr>
<tr>
<td>France</td>
<td>2</td>
</tr>
<tr>
<td>Hungary</td>
<td>1</td>
</tr>
<tr>
<td>Japan</td>
<td>4</td>
</tr>
<tr>
<td>Korea</td>
<td>1</td>
</tr>
<tr>
<td>Norway</td>
<td>6</td>
</tr>
<tr>
<td>Russia</td>
<td>1</td>
</tr>
<tr>
<td>Spain</td>
<td>1</td>
</tr>
<tr>
<td>Switzerland</td>
<td>1</td>
</tr>
</tbody>
</table>

SCHLUMBERGER FOUNDATION 2016 ANNUAL REPORT

Number of Fellows studying (or have studied) in host country
Since the program’s launch 12 years ago, the Schlumberger Foundation has hosted 15 in-person gatherings for Faculty for the Future Fellows to help foster an international community of women leaders in STEM. The meetings are hosted yearly in association with prominent universities where Fellows are pursuing their studies and bring together both current grantees and program alumnae.

The most recent Forums took place in Cambridge, United Kingdom and Cape Town, South Africa. At the Cape Town Forum, which was the first time the event took place in the African region, there were over 40 Fellows and alumnae in attendance, and the gathering in the UK brought together over 60 participants.

During the Forums, the Fellows meet and engage with distinguished scientists and hear accomplished leaders share their insights on topics such as how to support the next generation of young women in STEM. Through knowledge-sharing sessions and panel discussions, participants learn skills and techniques to raise their visibility and improve their chance of successfully impacting their community and beyond both in their fields of science and socially, by creating conditions to enable more girls and women to follow their scientific path.

Schlumberger Foundation president, Roseline Chapel, notes that “The women, brought together from diverse cultural and scientific backgrounds, share a dedication of excellence in research and a commitment to inspiring the future generation in their home countries to get involved in the sciences. These Forums offer a unique platform that encourages dialogue about the challenges and opportunities that women face in STEM.”
This section illustrates some examples of the role models in STEM of the Faculty for the Future program. These 3 women from India, Nigeria and Pakistan tell their own story of how they have surmounted many obstacles deliberately thrown along their path to prevent them from pursuing science, or through a life event that somehow slowed them down. Their journeys are inspiring, woven with determination and grit. Yet each of them would agree that theirs is an on-going journey; constantly reaching out to touch and influence the lives of other women around them who can learn much from the exemplary experience, passion and “never-giving-up” attitude, of their sister scientists.
Dr. Anurekha Sharma’s journey into science happened slowly but surely over a long period. Slowly, because of an unexpected family event that left her alone with a child requiring continuous medical attention to raise, and surely, because of her unusual willpower to overcome societal obstacles and continue pursuing her dream, regardless of her age and other strong odds against her.

“You see”, explains Anurekha, “I was lucky enough to have been born and raised in a family that considered the education of girls to be equally important as that of boys. I was a bright student and won prizes in athletics, drama and other areas. I loved reading about the lives of scientists and I was very much inspired by the great Marie Curie. It was my parents who encouraged me to pursue science, because they saw that I was pragmatic and the approach I had to solving problems was very effective.”

Anurekha had understanding parents who allowed her to have career choices. She graduated with a BSc in 1986, coming sixth out of approximately 1,000 students in her year. This was quickly followed by an MSc in Physics for which she won a gold medal having achieved first place. She then studied towards an M Tech in Electronics, Communications and Computer Engineering which she obtained with distinction in 1990.

Since then she’s been a Lecturer and subsequently a Professor in the Department of Electronic Science at Kurukshetra University. “At that point I wanted so much to do a PhD”, says Anurekha, “but life took a different turn for me then. While my own family strongly favored and encouraged the education of women, the family I married into was, I regret to say, a different story.”

Anurekha’s prospects with her in-laws fell badly short of her expectations and she found herself divorced and abandoned with a child who needed medical attention. “For sure, my scientific career was put on hold,” says Anurekha, “my child became my priority. And although I continued lecturing all through those years when I raised my child alone, I knew deep down that one day despite the adverse circumstances I would somehow, someday tackle the PhD that I wanted so much to do.”

“I am not someone who gives up easily”, Anurekha states, “I believe that if you really want to achieve something, you can, if you believe in yourself and if you don’t give up too easily. There were many times throughout those years when I was tempted to abandon my dream. You know, the demanding teaching hours and class preparation and all the added difficulties with the care of my child made life exhausting at times. But my doubts never lasted that long really, and I made sure to keep abreast of the latest developments in my field as best as I could.”

Therefore, with a lot of energy and willpower, Anurekha finally obtained her PhD in 2008. To her surprise however, this achievement was not overly recognized by her contemporaries, who failed to understand what getting a PhD in spite of adverse circumstances meant to her and it did not bring her the confidence in her abilities she had hoped for. When Anurekha applied for and was awarded the Faculty for the Future grant to carry out a one-year post doc research program at University College Cork, in Ireland she could hardly believe it. “It was a long shot when I applied, she says, “I was most definitely what one labels a mature student”, she laughs, “and I thought that I did not stand a chance of getting a grant because of this! I was so elated by the news and it gave me a new lease of energy and motivated me so much to continue to help other women around me! It was strange as well, how
Lami NNAMONU
No Shame, but Fame

The struggle to be a woman in science started rather early for Dr. Lami Nnamonu, born the second of nine children to parents who had no formal education themselves. Her parents had six girls one after the other before the boys started to arrive. Her elder sister, just two years older than Lami, was married off straight after completing primary school. Long before she had reached the age of 10, Lami had nurtured a deep-rooted desire to go to College and get an education, and as the close of her primary school days approached she realized with increasing dread that the same fate as her sister before her, would befall her too.

It quickly became clear to Lami that she would never be given the chance to go further with her education because her father had laid down a hard and fast rule: none of his daughters would go to College as they would only bring shame and disgrace upon the family by behaving promiscuously. He contented himself to wait until his sons were ready for secondary education, as they were sure to succeed where the girls could not. He therefore refused to pay the small sum required for the admission form that Lami needed to apply for the entrance examination for a place in College. To her great distress, she saw the deadline for the exam to state schools slip by. Her teachers, worried that one of their best pupils had not purchased the form, sent a representative to plead with her father, all to no avail.

Lami, though, had another idea to communicate to her family her intransigent nature. As the date of the Federal Common entrance examination approached, she quite literally went on hunger strike and immediately stopped eating and drinking and began to cry all day long, pleading with her mother to intervene and do something. This went on for three long days and at the end of the third day, her mother, distraught and weeping, eventually told her father what had been going on under his own roof. He finally gave in and produced the money for

the attitude of people around me also changed for the better…as if I had been elevated to a different level in their minds. It felt so good to gain the respect of certain male colleagues who had no time for me up until then.”

During her post doc Anurekha designed an energy harvester for low g and low frequency operation which has the potential to be used for pacemakers by tapping the heartbeat. The advent of Microelectromechanical Systems (MEMS) means that these devices are becoming implantable, but recharging batteries present challenges and the cost of repeat surgery for their replacement can be prohibitive. Energy from human sources such as the heartbeat, muscles or head motion have the potential to provide better alternatives.

It is hardly surprising that Anurekha has tapped into the energy of the heartbeat as the basis for her research. Her whole life has revolved around matters of the heart: starting from the care of her child, to the attention she devotes to encouraging other women into STEM by organizing information seminars, to never losing sight of her heart’s desire: to always push ahead, stick to her dreams, and solve each problem as it arises …effectively, and with her heart.
Lami NNAMONU
Roles Models Cont’d

the form which she purchased on the last day of sale. She went on to pass the entrance exam with flying colors and was admitted to Queens College, Lagos. This place was too metropolitan for her father’s liking, however, so she was changed to the city of Kano where members of her extended family could keep an eye on her. The rest, as they say, is history.

“‘The struggles for women in science’, Lami explains, ‘come in different shapes and sizes.’ ‘After obtaining a First-Class degree I enrolled on a Master’s course in a different University. Some of my male classmates on that course took great pains to argue that my First-Class grade was obtained by “quota” and that it was equivalent to a lower second class in the university we were now in.’ In Nigeria, Lami explains “the quota system is a policy that requires that a specified percentage of minority group members be hired or admitted”. Those boys maintained that ordinarily, a girl can make a first class in other courses – but in Chemistry, no way! Whenever I walked past them, they taunted me with chants like, “first class by quota”? Lami however, forged ahead undaunted despite the many things her male classmates did to make life unbearable. At the end of the MSc program however, their taunting days were silenced when it was Lami who walked off with the top score of the class. ‘They say silence is golden’, says Lami, ‘but on that particular day, the silence was more precious than jewels!’ Since then, Lami has gone from strength to strength and obtained a Commonwealth Split-site Doctoral Scholarship to carry out her PhD research in Durham University, in the United Kingdom leading to a PhD in Agrochemical Technology of the University of Agriculture Makurdi. She is the first to earn a PhD in Agrochemical Technology in Africa south of the Sahara and her work in the field of agrochemistry is helping her University to realize their core mandate against the backdrop of current challenges such as climate disadvantages and other factors affecting agricultural productivity. She is the Acting Director of the Centre for Agrochemical Technology. Noteworthy too, is when Lami first registered for a PhD in the University of Agriculture Makurdi where, at the end of her first year, she was offered automatic employment in the University because she completed the course work with a CGPA score of 5.0 (in other words, 100%).

Twice recipient of the Faculty for the Future fellowship, Lami has recently completed Post-Doctoral research at two Universities in the United Kingdom: Newcastle University and Durham University, where she worked on eco-friendly formulations of agrochemicals using biodegradable matrices and synthesis and evaluation of N-heterocyclic carbenes for use in sustainable organocatalysis.

In addition to numerous prestigious prizes and awards, Lami is also an entrepreneurial scientist, and is a Faculty Advisor for her university team of enactus (www.enactus.org) – an international organization using the power of entrepreneurial action to enable progress around the world. Through enactus, she guides students to create and implement science-based community projects that empower people to improve their quality of life and standard of living. The experience helps to transform lives as well as to help students develop the talent and perspectives that are essential to becoming effective, thereby producing graduates who are job creators rather than job seekers.

Lami’s influence as a compassionate role model is visible through the work of a non-profit network, GIFTS (Girls In Future Tertiary Science) which she founded in October 2016. She is dedicated not only to encouraging more girls into tertiary and postgraduate science studies and careers but also keeping them there. She has also been involved with academic achievement seminars at three universities in Benue state. A world leader trained in Haggai Institute Singapore, she is Benue State HI Alumni Association Secretary and an International endorser of the global Institute.
“My determination and willpower to succeed in science has given me so many wonderful opportunities… to do amazing things and to travel places I had never dreamed possible”, says Lami. “However, one of my deepest regrets is that my father sadly passed away in 1989 and did not live to see that instead of shame, I brought fame, not only to our family name, but to my local community as well. As for women in science, we still have a long way to go but I am happy to say that the girls in my home city do not have to resort to hunger strike strategies to get a place in College!”

Dr. Rida-E Zenab’s interest and passion for mathematics dates from early childhood. Numbers and formulae would play around in her head whilst falling asleep; revising for math’s exams filled her with the excitement of a happy, long-awaited event. Peace of mind would only come with each new problem solved. “There is a beauty about mathematics” says Rida-E, “that is difficult to describe to those who only see its dreary computation. It’s like the beauty of a landscape whose terrain may be rough, but the mountain peaks shine through!”

Rida-E had certainly some rough terrain to cross before she was eventually allowed to follow her dream and delve deeply into the world of pure mathematics. In fact, at the age of 10, after she had been admitted on merit to her new College, she was forced out of the overcrowded math’s class and made to choose another subject. “I was one of the pupils singled out to leave the class,” says Rida-E, “not due to lack of ability, but simply because my family was poor and defenseless.” Indeed, both the Principal and the math’s teacher believed that because she came from such a small, unheard of village, that their ploy could be easily carried out without resistance. They believed no one in her family would come to her defense.

“The next few weeks were awful”, recalls Rida-E. “Each day I would show up in the math’s class to the outrage of the teacher and I’d get thrown out again! In the end my father plucked up the courage to go to the Principal and demand why his daughter was not allowed to pursue mathematics after having been admitted on merit. And so, the Principal promised my father to allow me back into the class. But when the math’s teacher saw me enter the class again the next day she protested louder than ever before!”, laughs Rida-E. “She dragged me yet again to the Principal’s office and they obliged me for the umpteenth time to change subject despite the promise that had been made to my father the day before”. Little did they guess though, just how much...
Rida-E ZENAB
Roles Models Cont’d

determination would shine through this young student on that fateful
day. "I remember being absolutely furious" says Rida-E, "so I declared
that I was fully prepared to launch a petition against them both if they
did not allow me the place in the class which I had obtained on merit.
I can still see the shocked look on their faces", she laughs. "They were
terrified that I would carry out this action so they gave in and I got my
place in the math’s class at last!

The ensuing 4 years spent in that College were tough for Rida-E
because of the regular dose of punishment she would receive for merely
for having stood her own ground. It was rough terrain from every angle.
However, from the day she embarked on her BSc course, she has never
looked back. “With the new math’s teachers, came a new and easier life”, she says. Following her MSc, Rida-E was awarded four fellowships
from the Faculty for the Future program allowing her to obtain her PhD
at the University of York in the United Kingdom. Her specialization is the
theory of algebraic semigroups which is an algebraic structure of a set
together with an associative binary operation. They are used in many
mathematical areas other than algebra, including theoretical computer
science, category theory, analysis and number theory, and are being
studied by mathematicians all around the world.

Since 2016, Rida-E has been Assistant Professor at the Sukkur Institute
of Business Administration. She quickly set to work as a leading role
model and was one of the main organizers involved in organizing the
first Female Symposium of Mathematics in Pakistan which took place
in her University at the end of 2016. “The ratio of female students
studying mathematics at undergraduate level is very low in the South
of Pakistan where I work and almost zero at postgraduate level!”,
Rida-E explains. “So, a Symposium like this was long overdue and it is
something I intend to organize on an annual basis. It targets primarily
young girls from high school to create awareness about careers
in mathematics, as well as to promote females with a degree in
Mathematics to come forward and become role models for these young
students”.

Rida-E is relentless in her pursuit of reducing the gender gap in
mathematics. “Yes, maths can be rough at times”, she agrees, “but
women are just as capable of crossing the rough terrain as men are”,
she insists. "I want as many women as possible to reach the mountain
peaks and admire from great heights the beauty and magic of this
incredibly spell-binding and rewarding discipline.”