For operators tasked with offsetting the rapid decline curve in unconventional plays, the 40-192 model of the Cameron CAMLift® hydraulic pumping unit offers distinct advantages in the areas of optimization, savings, and uptime, as well as safety and convenience.

Actively manage the velocity profile
The 40-192 unit allows the operator to easily match pumping unit operation to downhole conditions. Simple, efficient manipulation of the velocity profile is used to improve pump inflow, match rod fall speeds, minimize cyclic stress on the rodstring, and reduce peak velocity and rod tubing wear. As the fluid level changes, the unit’s hydraulics allow for easy adjustment of counterbalance settings to match changing rodstring loads.

Maintain production while neighboring wells are being worked over
Conducting work on a multiwell pad requires a smaller footprint than a traditional beam pumping unit to allow for any necessary workovers. Not only does the 40-192 unit provide a significantly reduced footprint, it also eliminates common safety issues at the pad site because the actuation mechanism is conducted in an enclosed pedestal booth, and no large rotating equipment is used. Operators can maintain production on wells even when neighboring wells on the pad are being worked over.
Eliminate guide wires, reduce HSE risk
The 40-192 unit is 23 ft tall and does not require guide wires, unlike other hydraulic pumping systems that measure as tall as 44 ft and require guide wires. There are no pinch points, which reduces personnel HSE risk. All moving parts are enclosed, making it possible to safely carry out maintenance on one well while neighboring wells can remain on production. The 40-192 unit’s low profile meets visibility guidelines in environmentally sensitive areas. Three 40-192 units can be transported at one time on a trailer, and units have been helicoptered to remote sites. The largest skid is 13 ft by 8 ft and eliminates the need for concrete pads and guide wires.

Improve pump efficiency
The 40-192 unit’s design is well-suited to the challenging shale wells because it is capable of pumping to depths of 13,000 ft with improved efficiency. Mounted directly to the wellhead to reduce space requirements, the unit is capable of a 192-in stroke and a peak load of 40,000 lbm (comparable to a conventional beam pump). It operates with a full nitrogen counterbalanced system. Whereas conventional lift methods require weights on the crank arms to accelerate or decelerate lifting speeds (using a considerable amount of energy), the 40-192 unit has independent up and down strokes and needs fewer strokes to reach equivalent production, which reduces energy requirements and wear on rods and well tubulars. The system can go from six strokes per minute down to 1.5 strokes per minute.

Reduce installation-related costs
Rather than waiting the usual two to four days for a beam pumping unit to be transported and assembled onsite, the 40-192 unit comes preassembled, and technicians can install it in three to six hours. This saves the operator time and money—as much as USD 30,000 to 50,000 in installation-related costs (freight, prep, install, commission)—allowing operators to get to first oil quicker.

Pumpjack Key Features

- Lift capacity, lbm: 40,000
- Stroke length, in: 0–192"
- Dimensions (L × W × H): 31" × 51" × 19'9"
- Maximum speed: 2–6.5 SPM†
- Shipping weight, lbm: 2,150

† Maximum speed is dependent on many variables. Please review application with us for maximum speed for your well.

Power Skid Key Features

- Weight, lbm: 12,000
- Dimensions (L × W × H): 13' × 8' × 7'3"
- Power, VDC: 12
- Main pump, cc: 130
- Auxiliary pump, cc: 25
- Prime mover options: Natural gas, diesel, propane, electric

*Mark of Schlumberger
Copyright © 2016 Schlumberger. All rights reserved. 16-AL-139805

[Image of CAMLift units on a five-well pad in the Eagle Ford Shale in South Texas.]