Shrouded Intake and Thrust Chamber
For the REDA Coil coiled-tubing-deployed ESP system

APPLICATIONS
■ Rigless ESPs
■ Applications using REDA* Coil* coiled tubing-deployed ESP system

BENEFITS
■ Enables standard center tandem pumps to be used with REDA Coil system
■ Isolates pump intake from discharge when used in conjunction with seal assembly and sealbore, supporting an annular flow path
■ Accommodates the downward thrust generated by a pump in a shrouded intake system, helping maintain efficient production

FEATURES
■ Compatibility with REDA Maximus* ESP system 540/400 or 562/400 series configuration
■ 400 series thrust chamber
■ Optional control line outlets, including a port for the intake pressure line of the Phoenix xt150* high-temperature ESP monitoring system
■ Availability in a variety of sizes, materials, and elastomers

In conventional ESP systems, the pump is located at the top of the string and discharges directly into the production tubing string, isolating the discharge from the intake.

In inverted ESP systems, including the REDA Coil system, the pump is located at the bottom of the ESP string. The pump discharges into the annular area between the production tubing and the coiled tubing, making it necessary to isolate the intake at the bottom of the pump from the discharge above the pump.

Isolation is typically achieved by a sealbore packer or polished bore receptacle installed above the producing perforations before the ESP is installed.

The ESP string includes a tailpipe string and seal assembly. The tailpipe is connected to the ESP by a shroud around the pump intake to isolate the pump intake from the discharge; the seal assembly fits into a sealbore packer or polished bore receptacle.

A thrust chamber inside the shroud, fitted below the intake, has an internal bearing that accommodates the downward force generated by the pump during operations.