FUTUR
Self-healing cement technology for long-term zonal isolation

ADVANTAGES
- Repairs microannuli, internal cement cracks, and other hydrocarbon leak paths
- Extends production life of the well
- Self-repairs to protect against loss of annular hydraulic seal
- Eliminates costs related to remedial cementing operations and lost production
- Reduces well-monitoring costs

APPLICATIONS
- As a lead or tail system during any primary cement job
- In wells producing oil, condensate, gas, or a mixture of hydrocarbon fluid
- For plugging and abandoning wells
- In areas requiring enhanced protection against sustained casing pressure (SCP) throughout the life of the well

FEATURES
- Mixes and pumps using conventional cementing equipment
- Self-repairs cement sheaths without intervention
- Prevents annular migration of unwanted hydrocarbons to the wellhead or to surface
- Reacts only upon hydrocarbon exposure and otherwise remains dormant within the cement matrix
- Addresses possible future environmental regulations

Innovation in well cementing
FUTUR® self-healing cement technology is a new and unique sealant that improves long-term zonal isolation and protects against hydrocarbon leaks and SCP at the wellhead. Pumped and placed as part of any primary cementing operation, FUTUR cement forms an added isolation barrier above the reservoir, reacting whenever the cement sheath is damaged during the long-term productive life of the well. In the event the cement is damaged and hydrocarbons start to flow through either a crack or microannulus, this set cement responds within hours to seal the pathways, effectively healing the cement sheath. Once these flow paths are healed, the hydraulic integrity of the well is fully restored. This self-healing action is repeatable if annular integrity is further compromised during the life of the well.

Unique sealant performance
In laboratory and field tests, FUTUR self-healing cement technology outperforms any conventional cement system in preventing hydrocarbon migration and the potential for SCP. Long-term durable zonal isolation can be reestablished and maintained to extend the productive life of the well.

The responsive sealant can be strategically placed as part of the casing or liner cementing operation in any section of the well to form an effective long-term seal above the reservoir.

To provide an extra level of security against hydrocarbon leaks and SCP, FUTUR technology incorporates safety factors into the well cementing design to enhance well integrity and zonal isolation during completion, production, future remedial work, and abandonment.

Long-term isolation solution
The targeted placement of FUTUR self-healing cement reduces the risk of possible future degradation of the cement sheath through unplanned well events. The system has properties comparable to conventional cement systems and can be pumped with standard cementing equipment. No additional equipment or personnel are required.

To maximize well integrity, the minimum annular length of the FUTUR barrier should be at least 152.4 m [500 ft]. It is recommended to have two barriers above the reservoir and to extend the top of the FUTUR cement across the casing/casing interval.

FUTUR self-healing cement acts as a shield, reacting automatically upon contact with hydrocarbons migrating to the surface when stresses applied to the well break the initial annular...
Oil flow shutoff in a 100 um microannulus. Using FUTUR technology, the oil flow has dropped after a few hours, the cement matrix has self-repaired, and annular integrity is restored. A conventional system under the same conditions shows no improvement.

Gas shutoff test conducted at ambient temperatures and 21 MPa (3,000 psi). Initial flow rate is established using nitrogen gas (shown in blue), after which the system switched to natural gas. After 30 min, FUTUR self-healing cement reduced the flow to negligible quantities.

integrity. When placed above the reservoir, this innovative technology

- efficiently prevents oil or gas from traveling through a damaged cement column
- continues to work for the life of the well and beyond, activating when leaks in casing occur during production or after abandonment
- eliminates the need for well intervention by ensuring long-term protection and preventing costly repairs and production downtime.

Case histories
The FUTUR technology was used in two wells in the Stolberg field in the Central Alberta foothills region to address SCP, surface casing vent flows, and gas migration issues that conventional systems could not adequately mitigate. Current cementing practices in this area include the use of gas-tight slurries. The slurry incorporating the self-healing sealant was mixed using standard cementing equipment and procedures, and the unique sealant design was adjusted for the anticipated well and drilling fluid conditions. More than 3 years after implementation, the wells show no signs of pressure buildup in the annulus or at surface.

In Germany and Italy, FUTUR technology has been used to enhance zonal isolation in underground gas storage (UGS) wells. UGS wells often cross multiple depleted hydrocarbon zones that can still produce gas. The challenge is to avoid gas loss to these zones and prevent dangerous surface leaks that damage the environment and reduce the well’s storage capacity. In areas where gas leaks are common after completion, FUTUR cement has been utilized in 26 wells in Italy. For more than 3 years after implementation, these UGS wells show no signs of pressure buildup in the annulus or at the surface. FUTUR self-healing cement contained the leaks to protect the environment and the investment made in gas storage.

In Romania, FUTUR self-healing cement was used to address the sustained casing pressure (SCP) in the Totea gas field. Forty-nine gas wells were determined to have SCP ranging from 3 to 50 bar throughout the different field clusters. After applying an integrated solution including FUTUR self-healing cement technology for long-term well integrity, no SCP or surface leaks were detected for more than 8 months after implementation. In fact, FUTUR cement achieved adequate bonding across the target interval, even though the job was performed in severe conditions where total losses were encountered during cement placement.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density range</td>
<td>1.4 kg/L [11.7 lbm/galUS] to 1.9 kg/L [16 lbm/galUS]</td>
</tr>
<tr>
<td>Exposure temperature limits</td>
<td>20 degC [68 degF] to 138 degC [280 degF]</td>
</tr>
<tr>
<td>Hydrocarbon activation</td>
<td>Oil</td>
</tr>
<tr>
<td></td>
<td>Gas condensates</td>
</tr>
<tr>
<td></td>
<td>Gas</td>
</tr>
</tbody>
</table>

www.slb.com/futur

*Mark of Schlumberger
Other company, product, and service names are the properties of their respective owners.
Copyright © 2010 Schlumberger. All rights reserved. 16-CI-0083