APPLICATIONS
- Temporary near-wellbore isolation for hydraulic fracturing treatments in
 - new completions
 - refracturing operations
 - poorly cemented completions
 - compromised casing situations
 - cased hole with perforations or jetted slots
 - openhole completions

BENEFITS
- No residue after degradation
- Reliability in plugging performance, irrespective of aperture and configuration of heterogeneities
- Efficient wellsite delivery

FEATURES
- Tetramodal particle blend for optimum plugging and minimum permeability
- Fibers for transport downhole without particle segregation, resulting in optimum plugging performance
- Temporary isolation of perforations and wide fractures using a small volume of large-particle composite pill material
- Enhanced conductivity and superior diversion with partially degradable pills
- Suitability in downhole temperatures ranging from 100 to 400 degF [38 to 204 degC]

A composite pill of degradable particles and fibers
The BroadBand Sequence® fracturing service features engineered pills comprising a proprietary blend of degradable particles with tetramodal size distribution and fibers. The pill is designed so that the large particles are intercepted at the entrance of a fracture, while smaller particles reduce permeability to create temporary isolation. The fibers ensure the integrity of the blend from surface to near-wellbore area and enhance the bridging mechanism.

Improved near-wellbore conductivity with a partially degradable pill
An enhanced-conductivity pill blends degradable particles and highly conductive spheres chosen to enhance diversion strength and ensure near-wellbore conductivity. They are combined with degradable fibers, which prevent dispersion of the particles to ensure consistent isolation. After treatment, the particles and fibers fully degrade, leaving the spheres in the near-wellbore area to ensure superior well connectivity to the extended fracture and reservoir.

The partially degradable enhanced conductivity composite pill is applicable in formations ranging from 100 to 400 degF [38 to 204 degC].
Composite Pill

Improve diversion performance in conventional reservoirs

Conventional reservoirs will benefit from an engineered dynamic diversion pill that combines multimodal degradable multimodal particles, fibers, and nondegradable particulates. Degradable fibers function as a suspension agent for particles and help to maintain pill integrity during delivery. This conventional reservoir diversion pill is designed to improve diversion efficiency by minimizing fluid loss into open fractures and increasing the pressure differential to promote initialization of additional fractures in higher-stress areas of the formation.

This pill is compatible with the complete portfolio of Schlumberger fluids and additives used in fracturing operations and can be deployed in formations at temperatures ranging from 160 to 230 degF [71 to 110 degC].