Technical Paper: Development of an Optimized Completion Strategy in the Vaca Muerta Shale With an Anisotropic Geomechanical Model

Society: SPE
Paper Number: 167806
Presentation Date: 2014
 Download: Development of an Optimized Completion Strategy in the Vaca Muerta Shale With an Anisotropic Geomechanical Model (3.96 MB PDF) Login | Register



In the Vaca Muerta Shale of the Neuquén basin, Argentina, the most prolific intervals tends to be the most difficult to hydraulically fracture because of the abnormally high fracture gradients present in some parts of the basin. Thus, it becomes very important to have a good understanding of the anisotropic geomechanical properties of this heterogeneous formation prior to developing the completion strategy.

A calibrated, anisotropic 1D mechanical earth model (1D MEM) was developed and used to optimize the completion strategy for a vertical well in the Vaca Muerta Shale. The output from the 1D MEM, including the principal stresses, anisotropic elastic properties, pore pressure and rock strength, were used to define the reservoir intervals with best characteristics for initiation, propagation and maintenance of a conductive complex fracture network. Next, the reservoir intervals with the highest hydrocarbon generation tendency were determined from petrophysical and image logs acquired on the well. This formed the basis for selecting the optimum number of stages and perforation strategy on the well.

Sensitivity analysis revealed the impact of the hydraulic fracture properties on the production performance. The analysis showed that higher fracture conductivity greatly improves the well performance in the deeper Vaca Muerta intervals, whereas larger fracture surface area is more beneficial across the shallower intervals. Thus, a unique completion strategy was developed for each interval to optimize the well performance. Three hydraulic fracture stages were eventually planned initially, but because of casing limitation, only the first stage was executed. A time-lapse acoustic measurement acquired on the well corroborated the propped fracture height predicted during the completion design phase.

The study shows that proper characterization of the anisotropic geomechanical behavior of the Vaca Muerta formation improves the development of a completion strategy which ultimately optimizes economic performance of the well.

Request More Information

Seamless, Comprehensive Workflow for Stimulation Optimization

 Kinetix Shale Reservoir-Centric Stimulation-to-Production Software
Kinetix Shale reservoir-centric stimulation-to-production software integrates multiple models for maximizing production performance in any reservoir, from conventional to unconventional tight sands and shale. Visit Kinetix Shale Software page on the Schlumberger software site