Physics – Dielectric Permittivity

Permittivity is:

- a **physical quantity** that describes how an **electric field** affects, and is affected by a **dielectric** medium,

 and is determined by the ability of a material to **polarize** in response to the field,

 and thereby reduce the total electric field inside the material. Thus, permittivity relates to a material's ability to transmit (or "permit") an electric field.
Dielectric Polarization

- Mechanism
 - Water
 - Oil, Rock

> Medium

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Medium</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>$\varepsilon_r \sim 50 - 80$</td>
<td></td>
</tr>
<tr>
<td>Oil, Rock</td>
<td>$\varepsilon_r \sim 2, 5 - 9$</td>
<td></td>
</tr>
</tbody>
</table>

Hence, we can discriminate water from hydrocarbons, whatever its salinity.

- Textural Effect

Dielectric as function of frequency
- Pore fluid analysis
- Formation matrix analysis

Principle of Dielectric Measurement

- We convert a collection of amplitude and phase measurements into ε and σ

Amplitude A | Phase ϕ | ε Permittivity | σ Conductivity

- Dielectric Constant, is complex with two components one real and one imaginary

$$\varepsilon^* = \varepsilon_r + i \frac{\sigma}{\omega\varepsilon_0}$$
Defining fresh formation water

This is an *environmentally friendly* oil field waste product

Variable Formation Water Salinity

Standard logs

Moved Oil?
High deep resistivity and high porosity
Invasion from shallow resistivity

Heavy oil

Water zone
Variable Formation Water Salinity

Dielectric-Scanner real time answer

Fresh Water
Dielectric water filled porosity overlays with total porosity

Heavy oil

Water zone

Thin Beds Analysis

Dielectric-Scanner real time answers

Dielectric shows thin beds and a lot more oil than Induction

Interpretation is confirmed by FMI images and with vertical and horizontal resistivities from Rt-Scanner

Thin Bed Analysis

- Thinly bedded sands, conductive clay beds
- High viscosity oil

Objectives
- Hydrocarbon volume
- Reservoir quality

Dielectric Scanner high resolution water-filled porosity
- Correct hydrocarbon volume (uninvaded zone)
- Sand count & net pay
- Identify potential high sand quality

Comparison of 3 Laminated Sand Analysis methods

Permian Basin Dielectric Scanner Example

West Texas High Water Cut Carbonate
- The goal is to identify higher oil saturations and improve economics.
- The result in this case using the Dielectric Scanner was identification of lower water saturations and higher oil cut than standard Elan.
- The oil cut was up to 15%, out-performing the offsets
- Another result was better water resistivity calculation in the shallow portion of the well.
Main Zone of interest

Perfs 840 bbl/day 10-15% oil cut

Zone with low salinity

Salinity (constant green curve)

RW used in Elan

ADT RW xo
Variable M & Rwa

Conventional processing of data shows a productive zone at the bottom of the well. This is incorrect as shown by the Elan/Dielectric and is verified PL results.

- The cost to drill and stimulate these unproductive zones is approximately $750K/well. With 60+ wells drilled to date, the client has spent in excess of $45M drilling and completing zones that have contributed nothing but excess water.
- Lost opportunity costs associated with the 7-10 days it takes to drill through the lower 2 zones coupled with $750k savings on all future wells has changed the client’s outlook on SLB logs.
- Savings by using SLB is about 20-25% of well cost and versus only 2% added well cost to use SLB for logging the ADT.

Delaware Basin Wolfbone
“Using ADT to reduce water-cut and decrease Drilling & Completion Costs”
Questions?