Pressure Measurement, Downhole Fluid Analysis, and Sampling in Extremely Tight Deepwater Reservoir

Saturn 3D radial probe completes formation testing program in mobilities much less than 0.1 mD/cP, offshore West Africa

CHALLENGE

Complete program of pressure measurement, downhole fluid analysis (DFA), and sample collection that a conventional single-probe formation tester was unable to perform in permeabilities at the limit of an unconventional reservoir facies (0.1–0.01 mD).

SOLUTION

Deploy the Saturn* 3D radial probe with its large surface flow area of multiple elliptical ports that makes it possible to induce and sustain flow in low-mobility formations for pressure testing and fluid acquisition.

RESULTS

Achieved formation pressure measurements in mobilities as low as 0.01 mD/cP and flowed formation fluid to conduct DFA and capture samples in mobilities as low as 2 mD/cP.

Extremely tight reservoir conditions

An operator needed pressure measurements and fluid analysis and sampling for a deepwater West Africa well, but the very low mobilities of the reservoir sections were below the operating envelope for single-probe formation testers to flow fluid. In addition, using a straddle packer to isolate intervals would have been time consuming and could have delivered misleading data, owing to the large intrapacker sump volume.

Circumferential fluid flow

The Saturn 3D radial probe creates true 3D circumferential flow around the borehole even in very low-permeability formations. The four self-sealing elliptical ports have the industry’s largest surface flow area, totaling more than 79 in², to quickly establish and maintain flow from the entire circumference of the wellbore instead of funneling fluid from the reservoir to a single access point. The Saturn design also minimizes storage volume effects. The result is quicker cleanup times and the efficient performance of pressure measurements, especially in low-mobility formations where conventional probes cannot function.

Reservoir pressure measurement at mobility below 0.1 mD/cP

In two successive intervals, the Saturn 3D radial probe measured formation pressure and flowed fluid for DFA using the InSitu Fluid Analyzer* system and for sample collection. Stabilized pressure measurements were achieved down to mobilities of 0.01 mD/cP, and formation fluid was flowed for DFA and sampling at mobilities less than 2 mD/cP.

The operator plans to include the Saturn 3D radial probe in upcoming wireline logging programs.

*Mark of Schlumberger

Copyright © 2013 Schlumberger. All rights reserved. 13-FE-0051

www.slb.com/saturn