- Characterization
- Drilling
- Completions
- Production
- Intervention
- Insights
- Resource Library
- Locations
- Software
Microseismic monitoring has been used for years to unravel shale behavior under hydraulic fracture stimulation. However, because shale reservoirs can generate highly complex branching networks, simplistic fracture simulations are no longer valid. As a result, engineers use the concept of stimulated reservoir volume (SRV), an empirical approximation of reservoir drainage based primarily on the location of microseismic events. This approach assumes all fractures drain uniformly, which they do not.
Operators need to know about the effective propped volume (EPV), which is a fraction of the overly optimistic SRV. The EPV represents that portion of the hydraulically fractured reservoir that is open and capable of flowing hydrocarbons. Determining the EPV requires advanced signal processing techniques such as moment tensor inversion (MTI) and integrated geomechanical fracture modeling workflows. With the EPV, engineers can simulate fracture networks more precisely, place wellbores more wisely, and optimize drainage with fewer wells.
Share This
To download this file you first sign in to your Schlumberger account.
Don't have an account? Click below to get started.
Sign In Sign Up for an accountPremium content requires special account permissions. We need a little more information from you before we can grant you access.
Complete account setup